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Abstract 

In TREC 2014 Clinical Decision Support Track, the task was to retrieve full-texts relevant for answering generic clinical 

questions about medical records. For this purpose, we investigated a large range of strategies in the five runs we official-

ly submitted. Concerning Information Retrieval (IR), we tested two different indexing levels: documents or sections. Sec-

tion indexing was clearly below (-40% in R-Precision). In the domain of Information Extraction, we enriched documents 

with Medical Subject Headings concepts that were collected from MEDLINE or extracted in the text with exact match 

strategies. We also investigated a target-specific semantic enrichment: MeSH terms representing diagnosis, treatments or 

tests (relying on UMLS semantic types) were used both in collection and in queries to guide the retrieval. Unfortunately, 

the MeSH representation was not as complementary with the text as we expected, and the results were disappointing. 

Concerning post-processing strategies, we tested the boosting of specific articles types (e.g. review articles, case reports), 

but the IR process already tended to favour these article types. Finally, we applied a reranking strategy relying on the co-

citations network, thanks to normalized references provided in the corpus. This last strategy led to a slight improvement 

(+5%). 

 

Introduction 

The Bibliomics and Text Mining group (BiTeM) in Ge-

neva has a long history of participation in TREC cam-

paigns, including TREC Genomics [1], TREC Medical 

Records [2] or TREC Chemical IR Tracks [3]. In paral-

lel, the group has recently joined the Swiss Institute of 

Bioinformatics. Additionally, the group is currently in-

volved in several translational medicine research pro-

ject, including the MD-Paedigree project (EU FP7 Pro-

gramme), where his task is to help clinicians to retrieve 

similar cases in a federated digital repository gathering 

data from 7 European clinical centres, for better person-

alised predictive medicine. The focus of the 2014 Clini-

cal Decision Support Track was the retrieval of biomed-

ical articles relevant for answering generic clinical ques-

tions about medical records [4]. This track provided a 

rare opportunity to investigate several approaches for 

linking medical cases to information relevant for patient 

care. 

Indeed, a large range of strategies were implemented in 

the five runs we submitted. Concerning Information Re-

trieval (IR), we tested two different indexing levels: 

documents or sections. In the domain of Information 

Extraction, we enriched documents with Medical Sub-

ject Headings (MeSH) terms that were collected from 

MEDLINE or found in the text with exact match strate-

gies. Depending on the runs, these metadata were added 

to the document representation, or exploited in a parallel 

index. We also investigated a target-specific semantic 

enrichment: MeSH terms representing diagnosis, treat-

ments or tests (relying on UMLS semantic types) were 

used both in collection and in queries to guide the re-

trieval. Concerning post-processing strategies, we tested 

the boosting of specific articles types (e.g. review arti-

cles, case reports). Finally, we applied a reranking strat-

egy relying on a co-citations network, thanks to normal-

ized references provided in the corpus: articles that were 

cited by the top retrieved documents were added or 

boosted in the last run. 
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Data and strategies 

We officially submitted five runs. As we had no training 

nor tuning data, all strategies were applied with a priori 

and intuitive settings. When results and qrel (gold file) 

were made available (what we call “in post-

competition”), we also evaluated supplementary runs 

with different settings in order to have a better idea on 

the optimal performances of our strategies. Obviously, 

due to the nature of the gold file (pooling judgments), 

when we compute a post-competition run, we have to 

keep in mind that it can be under-evaluated, as it can 

contain a larger part of non-judged documents than offi-

cial runs. Yet, improvements and comparisons remain 

valid. 

 

All retrievals were generated with Terrier [5], an IR 

platform (in Java) which implements state-of-the-art 

indexing and retrieval functionalities, including a TREC 

format output. We used Terrier with a classical Okapi 

BM25 weighting scheme, with default settings, and an 

automatic relevance feedback query expansion: see [6] 

for more details about Terrier models. In the following, 

the Retrieval Status Value (RSV) is the relevance score 

attributed to a document by Terrier. Post-processing 

strategies were applied thanks to local scripts in Perl. 

1) Full text indexing 

Here are some statistics computed prior to the design of 

the full text search engine. The collection contained 

733,328 documents from PubMed Central. Documents 

were in nxml format, and could be composed of an ab-

stract, and/or different full-text sections. Most of them 

(79%) had an abstract and other sections, while 14% 

had sections but no abstract, and 7% had an abstract but 

no section. Documents had on average 11 sections, 

while a section contained on average 360 words, versus 

160 for an abstract. 

 

Document or section indexing. We decided to test two 

indexing units: document or section. For document in-

dexing, all sections were merged into a unique repre-

sentation. For section indexing, each section was in-

dexed; then, in the output of the search engine, when 

multiple sections from the same document appeared in 

the ranking, the RSV of the document was the RSV of 

its first retrieved section. 

 

Query representation. In the official test set (30 que-

ries), each query contained a full description of the in-

formation need, and a summary. For the official runs, 

we only used the summary part, but in post-competition 

we also evaluated retrieval with full queries. For all ex-

periments, we removed numbers from the queries. 

 

Boosting based on article types. Still for full text index-

ing, we also investigated a boosting strategy depending 

on article types. Our initial hypothesis was that review 

articles and case reports were more likely to be relevant 

for clinical decision support, thus we decided to apply a 

+20% boost on RSV for these article types. This +20% 

boost was applied to all official runs, but in post-

competition we evaluated different boosting values.  

2) MeSH recognition and indexing 

In parallel with full text indexing, we also investigated 

MeSH recognition and indexing. MeSH indexing can 

offer a complementary representation in some retrieval 

tasks, such as with clinical captions in previous CLEF 

evaluation campaigns [7]. MeSH concepts were recog-

nised in documents using a classical strict mapping 

(Rabin-Karp algorithm). See [8] for further details and 

evaluation of MeSH recognition by Rabin-Karp algo-

rithm. MeSH concepts manually assigned by human in-

dexers also could be collected when the PubMed Cen-

tral document had a corresponding citation in 

MEDLINE. Thus, each document (or section) could be 

represented and indexed with its MeSH concepts. Then, 

the same extraction was performed with queries. 

 

MeSH concepts for document representation. We ex-

tracted an average of 422 MeSH concepts per docu-

ment. Dealing with MeSH concepts collected from 

MEDLINE, 92% of the documents in the collection had 

an associated PMID, and only 53% had MeSH terms 

assignments in MEDLINE (usually around 10 MeSH 

concepts). Thus, for official submissions, we had the 

choice between building one index for text and one for 

MeSH, and then combining the rankings, or building a 

unique entity for each document, merging text and 

MeSH terms. 

 

MeSH concepts for query representation. The same ex-

traction was performed for queries. The Figure 1 shows 

the MeSH concepts that were extracted from summaries 

of queries 1,11 and 21. 

 
<topic number="1" type="diagnosis"> 
  <summary>58-year-old woman with hyperten-
sion and obesity presents with exercise-related 
episodic chest pain radiating to the 
back.</summary> 
  <MeSH_in_summary>Women ; Hypertension ; 
Obesity ; Exercise ; Thorax ; Pain ; Back ; Chest 
Pain ; Pain</MeSH_in_summary> 
 </topic> 
<topic number="11" type="test"> 



  <summary>40-year-old woman with severe right 
arm pain and hypotension. She has no history of 
trauma and right arm exam reveals no significant 
findings.</summary> 
  <MeSH_in_summary>Women ; Arm ; Pain ; 
Hypotension ; History ; Wounds and Injuries ; 
Arm</MeSH_in_summary> 
 </topic> 
<topic number="21" type="treatment"> 
<summary>21-year-old female with progressive 
arthralgias, fatigue, and butterfly-shaped facial 
rash. Labs are significant for positive ANA and 
anti-double-stranded DNA, as well as proteinuria 
and RBC casts.</summary> 
  <MeSH_in_summary>Female ; Arthralgia ; Fa-
tigue ; Butterflies ; Exanthema ; DNA ; Pro-
teinuria ; DNA</MeSH_in_summary> 
 </topic> 

Figure 1. Test set in the official format, with MeSH concepts 

that were extracted in the summary. 

MeSHtargets. Queries dealt with one of these three cat-

egories: diagnosis, tests or treatments. A particularly 

promising investigated strategy was to identify in doc-

uments the extracted MeSH concepts that belonged to 

the corresponding category, and to over-weight them. 

For instance, for queries dealing with tests, documents 

that have a lot of MeSH concepts related to tests should 

be favoured. Thanks to the UMLS Semantic Types [9], 

we designed sets of Semantics Types for each category. 

For instance, for tests, we selected T060 Diagnostic 

Procedure and T059 Laboratory Procedure. Thus, for 

each document, for each MeSH concept belonging to 

the test category, we added the word MeSHtargetTest in 

the document representation. There was an average of 

14 MeSHtargetTest in documents, versus 37 for 

MeSHtargetDiagnosis and 22 MeSHtargetTreatment. 

The same MeSHtargets were used in queries. For in-

stance, for queries dealing with tests, we added 

MeSHtargetTest three times in the query representation. 

3) Co-citations network 

At last, we explored post-processing strategies dealing 

with co-citations. The idea was to start from a ranking, 

and then to promote the citations of the top retrieved 

documents. This strategy achieved leading results with 

patents (see TREC Chem campaigns [3], with up to 

+150% for MAP), but it was the first time we applied 

this to the medical literature. Formula 1 gives the final 

score of a document d after re-ranking. E is the set of 

retrieved documents (1000 by default), is_citedd,e is 1 if 

document d is cited in document e, 0 otherwise.   is a 

setting variable. 

 

 
E

eeddd RSVcitedisRSVScore ,_  

Formula 1. Co-citations network boosting. 

In simple words, this reranking consists in scanning the 

retrieval ranking, and for each document e and its RSVe, 

adding   RSVe to its citations. This means that doc-

uments that were not retrieved by IR can appear if they 

are cited by most top retrieved documents. 

Results and Discussion 

In the following, we describe results in light of R-Prec. 

Figure 2 contains different official R-Prec of TREC 

CDS 2014. BiTeM runs from 1 to 5 investigated differ-

ent strategies that are discussed in the following. 

 

Figure 2. Different official R-Prec values, for the BiTeM runs 

and the other teams’ runs (median and best). 

1) Full text indexing 

All the submitted runs were computed with both text 

and MeSH indexes, but in post-competition we investi-

gated text-only indexes. 

 

Document or section indexing. Official runs 1 and 2 

were computed with document indexing, while official 

runs 3 et 4 were with section indexing. The official run 

5 was supposed to be our optimal run, and was comput-

ed from the run 4: this illustrates how we thought that 

section indexing would have better results. Unfortu-

nately, runs 1 and 2 were much better than runs 3 and 4. 

In particular, runs 2 and 4 only differed on the index-

ing, and run 2 had a R-Prec of 0.187, versus 0.114 for 

run 4 (-39%). In post-competition, no further experi-

ments were done with section indexing. 

 

Query representation. All submitted runs were comput-

ed using only the summary part of the queries. In post-

competition, we compared the value of description and 

summary, evaluated with the document indexing, with-

out automatic query expansion. In terms of R-Prec, de-

scriptions obtained 0.169, summaries obtained 0.170, 

while a query representation with both fields obtained 



0.185 (+9%). With automatic query expansion in Terri-

er, R-Prec reached 0.211 (+14%). 

 

Boosting based on article types. In post-competition, 

we analysed the qrel in order to find which article types 

were overrepresented in the qrel compared with the col-

lection, i.e. which article types are more likely to be 

relevant for this task.  

 

Article type 
Distribution 

in qrel in collection in our runs 

research-article 52.2% 74.3 % 37.9 % 

case-report 20.4 % 4.0 % 41.5 % 

review-article 17.9 % 6.9 % 10.9 % 

Other 3.2 % 2.6 % 3.6 % 

brief-report 1.5 % 1.1 % 0.9 % 

Table 1. Distribution of article types in qrel (only relevant 

documents), in collection, and in one of our runs. 

Our intuition was good, as review-articles and case-

reports are much more represented in qrel compared to 

the collection. For all our official runs, we applied a 

+20% boosting for RSV for these article types. Unfor-

tunately, post-competition experiments did not confirm 

the effectiveness of this strategy. Starting from the pre-

vious post-competition run (R-Prec 0.211), the +20% 

boosting degraded the run (R-Prec 0.195, -8%). Actual-

ly, no tested value for boosting led to better results. Ta-

ble 1 shows the distribution in our run, and it seems that 

the IR engine already returns a larger number of case-

reports.  

2) MeSH indexing 

All the submitted runs were built with both text and 

MeSH indexes, but in post-competition we investigated 

MeSH-only indexes. 

 

MeSH concepts for document representation. For the 

query representation in competition, we only used 

MeSH terms extracted from the summary. In post-

competition, like for text, we compared the value of de-

scription and summary. With the MeSH indexing, que-

rying with MeSH terms extracted from description led 

to R-Prec of 0.123, versus 0.125 with MeSH terms ex-

tracted from summary. Like for text, both values are 

equivalent, and like for text the result is slightly better 

when using both sources: R-Prec of 0.143 (+14%). Un-

like text, automatic query expansion is not useful for 

MeSH representation. 

Yet, the optimal performances of the MeSH representa-

tion are lower than text: R-Prec 0.143 versus 0.211. We 

then wanted to know how complementary both repre-

sentations were. We thus analysed the qrel and our both 

runs (text and MeSH) and looked at the proportion of 

relevant documents that were found by each. The fol-

lowing Venn diagram (Figure 3) illustrates the distribu-

tion. 

 

 
 

Figure 3. Complementarity of text and MeSH representations. 

17% of relevant documents were only retrieved by the text 

index (at rank 1000), 6% only by the MeSH index, 37% by 

both. 40% were not retrieved. 

 

Hence, starting from the text index, it seems hard to 

combine the MeSH index and to take benefit from the 

6% of relevant documents only retrieved by MeSH. We 

tested different linear combinations but only achieved a 

little gain (R-Prec from 0.211 to 0.213) using 10% of the 

MeSH RSVs. 

Finally, the impact of the MeSH concepts collected from 

MEDLINE was weak: when indexing only these MeSH 

concepts, the computed run had R-Prec 0.028. 

 

MeSHtargets. In the official submissions, runs 3 and 4 

only differed in the application of the MeSHtargets 

strategy. We observe a slight improvement in R-Prec 

(+6%). Unfortunately, these official runs were computed 

with section indexing. In post-competition, we explored 

a wide range of settings for applying this strategy to 

runs computed with document indexing, but we did not 

observed any significant gain. 

3) Co-citations network 

Table 2 gives the result of the co-citation network strat-

egy applied to the best run described (text representation 

+ 10% MeSH representation, R-Prec 0.213). 

 

 

 

 



  0 0.01 0.05 0.1 0.2 0.3 

R-Prec 0.213 0.214 0.224 0.224 0.218 0.209 

Table 2. R-Prec after the co-citations network strategy with 

different values of alpha. 0 is the baseline. 

With  = 0.05 we observe a slight improvement (+5%). 

In the official runs, we applied this strategy to the run 4 

and arbitrarily set   to 0.10. Unfortunately, run 4 was 

computed with section indexing and was far from being 

the best one. Yet, a gain was also observed from run 4 to 

run 5 (R-Prec from 0.114 to 0.124, +8%). 

Conclusion 

For this TREC CDS 2014 campaign, we explored a wide 

range of strategies, such as : 

- document or section indexing, 

- MeSH representation, 

- article-type boosting, 

- co-citations network. 

 

Section indexing was clearly a weak approach. The arti-

cle-type boosting was counter-productive, but it ap-

peared that the IR process already tends to favour re-

views and case reports. MeSH representations, extracted 

from the full-text or collected from MEDLINE, led to 

very slight improvement and did not show great com-

plementarity with the text. Finally, the co-citations net-

work strategy led to significant improvements (+5%). 
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